If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -17x + 12 = 0 Reorder the terms: 12 + -17x + 9x2 = 0 Solving 12 + -17x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 1.333333333 + -1.888888889x + x2 = 0 Move the constant term to the right: Add '-1.333333333' to each side of the equation. 1.333333333 + -1.888888889x + -1.333333333 + x2 = 0 + -1.333333333 Reorder the terms: 1.333333333 + -1.333333333 + -1.888888889x + x2 = 0 + -1.333333333 Combine like terms: 1.333333333 + -1.333333333 = 0.000000000 0.000000000 + -1.888888889x + x2 = 0 + -1.333333333 -1.888888889x + x2 = 0 + -1.333333333 Combine like terms: 0 + -1.333333333 = -1.333333333 -1.888888889x + x2 = -1.333333333 The x term is -1.888888889x. Take half its coefficient (-0.9444444445). Square it (0.8919753087) and add it to both sides. Add '0.8919753087' to each side of the equation. -1.888888889x + 0.8919753087 + x2 = -1.333333333 + 0.8919753087 Reorder the terms: 0.8919753087 + -1.888888889x + x2 = -1.333333333 + 0.8919753087 Combine like terms: -1.333333333 + 0.8919753087 = -0.4413580243 0.8919753087 + -1.888888889x + x2 = -0.4413580243 Factor a perfect square on the left side: (x + -0.9444444445)(x + -0.9444444445) = -0.4413580243 Can't calculate square root of the right side. The solution to this equation could not be determined.
| X=46+.08x | | x=4y+15 | | (4+5i)(3-7i)= | | 6x-3y=-14 | | -27=2c-7-7c | | x+4y=165 | | T-1.8=-2.3 | | 7(v+1)-3v=2(2v+2)-8 | | g(25)=2x+15 | | 20t^2+44t-48=0 | | 2x+-32=-6(x-4) | | 1/2x+3/2=5/2x+5/2 | | 10cosx-2=0 | | 8x+6(x+10)=2340 | | 11v-7v=36 | | 4*2x=16 | | 8x+(6x+10)=2340 | | 3+8t-1=9t+56-7t | | 9(v+4)-3v=2(3v+2)-13 | | 4(y-9)=8(y-3) | | 3x-9=3(x-43) | | (2k-3)x^2+8x+(2k+3)=0 | | 2n-12=12 | | (2k-3)x^2+7x+(2k+3)=0 | | 12x+36y= | | (4x+2)(16x^2-8x+4)=0 | | 2x^2+33x-9.1=0 | | 4x^4-36=0 | | 14(v+4)-2v=4(3v+4)-24 | | (X+5)*3=42 | | 40(25+x)= | | -5-13=x |